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ABSTRACT

ft this paper we use'Conley's index to study the critical points of a

functional f on a finite dimensional sphere in presence of a symmetry group.

We-prove a theorem which leads to a lower bound on the number of critical

points of f when the group is finite, even if the action is not free.

This investigation has been motivated by the following bifurcation

problem:

Au = Xu

where A is a variational G-equivariant operator.

--We give an estimate on the number of branches bifurcating from an

eigenvalue of A'(0)j '
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SIGNIFICANCE AND EXPLANATION

We consider the bifurcation problem

A(u) -

where A is a nonlinear-variational operator with A(O) 0. For such

operators it is well known that every eigenvalue X0  of the linearized

operator A'(0) is a bifurcation point. If the problem exhibits some

symmetry, the eigenvalues of A'(0) are generally degenerate.

Under suitable assumptions, we prove that the number of "branches" which

bifurcate from (0,A0 ) is larger than or equal to the multiplicity of X
0

This very concrete problem leads us to the study of symmetric functionals on

the n-dimensional sphere which we analyze using the Conley index.
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INTRODUCTION

We consider the following nonlinear eigenvalue problem

(0,1) A(u) = Xu

where A is an operator of class C1 defined on a real Hilbert space H such that

A(M) - 0.

We suppose that A is variational i.e. there exists a functional J H + R such

that:

(0.2) A - J1

where J' denotes the gradient of J. It is well known (ef [K], [Bo], (M]) that, under

these assumptions, every finite multiplicity isolated eigenvalue of the linearized

equation:

(0.3) A'(0)v = Xv

is a bifurcation point of A.

However, if A is odd and X0 is an isolated eigenvalue of (0.3) with multiplicity

n, BShme and Marino ((Bo],M]) have proved that at least 2n "branches" of solutions of

(0.1) bifurcate from X0' i.e. the multiplicity of the linearized problem persists in the

nonlinear problem (at least in a certain sense).

In this case the functional J is invariant with respect to the action of the group

G- (Id,-Id) : Z2 .

Moreover the eigenvalue problem can be reduced, by virtue of the procedure of B3hme

and Marino, to the study of the critical points of J on a manifold isomorphic to the
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Dipartimento di Matematica dell'Universitg di Narl, Nari, ITALY.

Dipartimento d MateSatica dell'Universt r d Napoli, Napoli, ITALY.
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(n-1)-dimensional sphere S
n- 1 . 

The result finally follows from the fact that

cat(Sn-/GO) - n

where cat(*) denotes the Ljusternik-Schnirelman category.

The purpose of this paper is to investigate if there are other group actions which

lead to a multiplicity result of the Dohme-Marino type, even in the case when the L.-S.

category of the quotient space is not known and when the action of the group is not free

(cf. sect. 1).

In theorem 2.1 we obtain an estimate of the number of critical points of a functional

defined on S
n - 1 

which is invariant with respect to the action of a finite group. This

result allows us to extend the BMhme-Marino result to more general situations (Th. 3.1).

Since in our situation we cannot use the L. S. category, the choice of the Morse

theory seems suitable. We have also used the Conley index to treat the degenerate case.

-2-



1. Notation and preliminaries

Let 4 be a n-dimensional compact manifold and f a C1  function on M. A point

x 0  in K is a critical point for f if f'(x 0 ) - 0. Let K be the set of the critical

points of f and we suppose that K has a finite number of connected components. The

collection of its connected components will be denoted by (M1 VW P .

Since the sets MW are isolated in K, using the values of f, we can order them inS

such a way that they form a Morse decomposition in the sense of [C] and [CZ]. Then to each

Mi there corresponds a formal polynomial p(,M W ) which expresses the *Conley's index" of

M in the gradient flow:

(1.2) x - -f'(X)

For instance, if f e C2 and Mw - {x }, where x is a nondegenerate critical point,

then:

(1.3) p(t,x) 
d

where d is the number of negative eigenvalues of the Hessian Hf in the point xw . If

f e c2  and if is given by an isolated, degenerate critical point x , then, in general,

p(t,x W is not equal to td (see [C) for some examples).

We give the following definition:

DMIFNITION 1.1 - The number (M) = p(,1M ) is said to be the multiplicity of M.

From our definition it follows that each nondegenerate critical point has multiplicity 1.

Definition 1.1 is justified by the following argument. It is known (see also [MP]) that

if f is C2  and has some degenerate critical points, then you can perturb it obtaining

another function f, "near" f, which has only nondegenerate critical points. By using

the continuity property of Conley's index this implies that if x0  is an isolated

degenerate critical point of f, with p(x0) p, then it splits in at least p non-

degenerate critical points of i.

To the manifold M there corresponds a formal polynomial P(t,M), that is the

"Poincar" polynomial of M which 'represents" the cohomology of M with coefficients in

some field F (see [Sp]). For instance if M = Sn, then p(t,Sn) - l+tn, for each

field F, because the cohomology groups of Sn are:

-3-



(i F for i 0 or n

( 0 otherwise

With this understood, the "generalized" Morse relations are:

(1.4) ) p(tM ) - P(t,M) + (l1t)Qf(t)

where Qf(t) is a polynomial with nonnegative coefficients which depends on f. Because

of this we have:

(1.5}. P(tMw P(tM)

where this inequality must be interpreted in the sense that every coefficient of the left

hand side polynomial is greater than or equal to the corresponding coefficient of P(t,M).

In particular, if f e C2 is nondegenerate we have:

m
(1.6) p(tM I - Giti

~i-a
where a i is the number of critical points whose Morse index is equal to i. Then, since

the coefficients of P(t,M) are the "Betti" numbers of M, from (1.4) and (1.6) we obtain

the classical Morse inequalities for f.

REMARK 1.1 - The definition of Conley's index applies in much more general situations than

that described here. The only thing that you require in order to define this index is the

presence of a flow in a topological space (see also (SM]).

We end this section recalling something about group actions and introducing some

notations (we refer to (Br] for proofs and details).

Let G be a compact Lie-group and X a topological space.

An action of G on X is a map

* G x X + X , *(g,x) - gx

with the following properties:

(1.7) lx x for each x e x, I e G

-4-



I

(1.8) g1(g2 x) - (gg 2 )x g,g 2 e G, x e x

A space with an action of a group G is called a G-space. We say that the action of G

on X is free, if:

(1.9) g + 1 .- > gx + x for each x e x

We denote by OX - {gx,geG} the orbit of x and by X/G the set of all orbits.When

the action is free, each Ox  looks like G in the sense that there exists a natural

homeomorphism between OX and G.

The closed subgroup of G defined by

G - {g e G : gx . x}x

is called the isotropy group of x. Of course, if the action is free G = fi}, forx

each x.

If Gx - G, we say that x is a fixed point under the action of G. We want to

point out that if X is a manifold and the action of G is not free, then, in general,

X/G is not a manifold.

Given the function f : X + R, we say that f is G-invariant if f(gx) - f(x) for

each x e X and g e G. If X and Y are two G-spaces, we say that a function

F : X + Y is G-equivariant if:

F(gx) - gF(x) for each x e X and g e G

Finally we recall that, if H is a real Hilbert space, the action of a group G on H is

said to be orthogonal if (x,y) - (gx,gy), for every g e G, x,y e H, where (.,o) is

the scalar product in H. From now on everytime we say "orthogonal group" it is understood

that we are considering a grour with an orthogonal action.

-5-



2. Critical points of symmetric functions on the sphere.

Let Sn denote the sphere in le + ', G a finite group acting orthogonally on Sn and

let f : Sn + R be a G-invariant C -function.

We denote by IGI and IGxl the order of G and Gx  respectively and by Oxi the

number of distinct elements of 0x . We set

6 - G.C.D.10xI : x e K}

where K is the set of critical points of f and G.C.D. denotes the greatest common

divisor.

REMARK 2.1 - we observe that Io 1 - GL, thus IO1 is a divisor of IGI. If the
x

action is free, then 6 = IGJ.

The main result of this section is the following theorem:

THEORM 2. 1: If 6 ) 2 then f has at least n+1 orbits of critical points provided

that each critical point is counted with its multiplicity in the sense of Definition 1.1.

Proof: If f has infinitely many critical points then the theorem is proved. So we can

suppose that f has only finitely many critical points. This implies that each of them is

a connected component in the set K. Hence the sets M of the Morse decomposition

defined in the previous section are just points and the generalized Morse equalities (1.4)

are:

(2.2) j p(t,MN) - P(t,S n ) + (1+t)Qf (t)

Writing explicitely (2.2) we have:
n n-1

(2.3) i 1+tn + (1+t: 0L it i

1-0 i-O

where l+tn represents the cohomology of Sn with a field of coefficients F.

Note that the maximum exponent in the left hand side of (2.3) is n because the

index-polynomial of each critical point cannot contain a power bigger than t , if n is

the dimension of the manifold on which f is defined.

Since f is invariant under the action of G the polynomial p(t,M ) is invariant

too, i.e. it is the same for points in the same orbit. This implies that each coefficient

-6-



ai different from 0 is a multiple of 5. From (2.3) it follows that

ao 1+6a0 I0
a1 = 6O+8I

(2.4) = +8

n n-1

We want to prove that each 8 is different from 0 and is not a multiple of 6, arguing

by induction. For F0 this is true since a0 is a multiple of S.

Now suppose that this is true for 1i1. Then (2.4) implies ai + 0 and so

L,= p6, for some p + 0. Therefore, since i is not a multiple of 6, i  is

different from 0 and is not a multiple of 6. Having proved that i > 0, for each

0 4 i 4 n-7, the assertion follows from (2.4), because each a has to be greater than

zero.
0

REMARK 2.2 - From the proof of the previous theorem it turns out that since each ai  is

different from 0, for every 0 4 i ( n, f has at least 6 critical points whose poly-

nomials contain the power ti .

COROLLARY 2.1 - If f e C2  is not degenerate, then there exists at least one orbit of G

consisting of critical points of f with Morse index i, for i = 0,...,n. In particular

f has at least n+1 critical points which lie in different orbits.

PROOF: It follows from remark 2.2 and the fact that for each nondegenerate critical point

xi, p(t,fx I) = t d  where d is the Morse index of x .

COROLLARY 2.2 - If the action of G on Sn is free. then f has at least (n+1)IGI

critical points.

REMARK 2.3 - If G - Z and the action is free the assertion of Corollary 2.1 can be

obtained using the Ljusternik-Schnirelman category. In fact, consider the

diagram

-7-



Sr

S n /XP

where w is the projection and i is defined by the diagram itself. Since cat(sn/zp) =

n+1, then f has at least n+1 critical points. Then f has at least (n+1)JGI

critical points. Under this point of view Corollary 2.1 is an extension of this result

any finite group G. However the knowledge of cat(Sn/G) gives extra information in

"degenerate* case. In fact if cat(Sn/G) - n+1, there exist always at least (n+1)G

distinct critical points, no matter how degenerate they are. If cat(Sn/G) 4 n, then

using Corollary 2.2, we can conclude that there exists at least (n+1)IGI critical points

only if they are counted with their multiplicity in the sense of definition 1.1.

REMAPK 2.4 - The result of Theorem 2.1 is of topological nature. Therefore the same result

applies not only to the n-dimensional sphere but to any manifold G-homeomorphic to it.
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3. A bifurcation theorem.

We begin this section by stating the following Lemma which is the equivariant version

of a Lemma of A. Marino [M] (cf. also [Bo]).

LEM4MA 3.1 - Let G be a group acting orthogonally on the Hilbert spaces, XI,X 2 and Y.

Let n be a G-invariant neighborhood of 0 in X, x X and set

r = {(x ,x2) e xI x x2 : Ix2 1 4 yx 1I}, Y > 0. Let B : r n Q - {0} + Y be a C1 -operator

with the following properties:
B(x1,0)

i) lim 1 0

ii) there exists an isomorphism B0  from X2 to Y such that:

Bx2(x,,X 2  + B0  strongly if:

Ix 21 Ix,!*I2 o and T-7 + 0

iii) B (x1 lx2) + 0 strongly if 1x11 + 1x21 + o and T 1 o

iv) B is G-equivariant.

For c,6 > 0 set

C = {(xlX 2 ) e x X2 : Ix2 1 < c Ix1 11

F = {x1 e x, : 0 Ix1t < S}

Then

If c and 6 are sufficiently small there exists an unique function

: F

(I) with its graph in C such that

B(x 1 ,x2 ) = 0 if and only if x =(x

for every (x ,X2) e c n 0.

(II) The function 6 is C1 and lia (xI) 0

(1)

In X1 X X2 there is the "diagonal" action of G:

g(xl,x 2 ) = (gxlgx2 ) g e G, (xlX 2) e X1 x X2.

-9-
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(IIr) 4 is G-equivariant.

PROOF: The proof of (I) and (II) is contained in (MI. We have only to prove that * is

G-equivariant. For every g e G and x1 e F, by (I). *(qx 1 ) is the only point such

that

(3.1) B(gxi,#(gXl)) - 0

But we also have

B(gx,gblXl)) gB(X 1 ,4(x 1 )) 0

By the above equality and (3.1) it follows that *(gxl) - g(xI). The proof is complete.

0

Now let H be a Hilbert space on the real field with the orthogonal action of a

group G and let il c H be a G-invariant open set, with 0 e n.

We consider the equation:

(3.2) A(U) - Xu

where A is a variational G-equivariant operator of class C1 , i.e. there exists a G-

invariant functional of class C2 , J : H + R such that

(3.3) A(u) - J'(u)

where J' denotes the gradient of J. Moreover, we suppose that A(0) - 0 so that 0

provides the trivial solution of (3.2).

Now lets suppose that 10 is an isolated eigenvalue of A'(0 of finite

multiplicity. By our assumptions A'(0) is a selfadjoint operator, then we have the

following splitting of H:

H - H1 * H2 .1
where H1 = ker(A'(0) - X0 1) (I denotes the identity in H) and H2  H1 -0!
range(A'(0) - X01). PI and P2 will denote the orthogonal projection on I and H2

respectively.

For every u e H, u, and u2 will denote Plu and P2u respectively.

Since G is an orthogonal group, H1 and H2 are invariant under the action of G.

Using this decomposition of H, equation (3.2) is equivalent to the following system%

-10-



P [Au - (Au,u) u) - 0
i. i
2

(3.4)

P 2 [Au -(u,) ul -o
lu

2

where I" is the norm in H.

The operator:

Bu B(ulu 2 ) = 
P 2 [Au - (Au]u)

Jul2

is G-equivariant. In fact:

P CA~uloqu (AVu,qu) u
B(gulgu 2) ' PA( u1'gu2} - gu] -

u2
P219Au -)u12 u) gP [Au - (Aui2 u)

We have used the fact that G is orthogonal and A is G-equivariant. Moreover B

satisfies all the hypotheses of Lemma 3.1 (see (MI ). Then we deduce the existence of a

cone C - fu : P uj 4 CIP ul}, a number 6 > 0 and a C1 - G-equivariant function:
2 1

* : u e H1 : 0 < lu I < .1 + H2

such that:

(3.5) lim '(u 0

(3.6) B(u ,u2) 0 if and only if u2 = (u

Let us call M the graph of 0. This is a G-invariant n-dimensional manifold,

where n is the dimension of H1 .

Then we consider the sphere S = {u e H : Jul = P) and prove the following:p

LEMMA 3.2 - There exists p0 > 0, such that, for each 0 < 0 4 P0 , M0 : S n M is G-

homeomorphic to the (n-i)-dimensional sphere S1  in H1 .

PROOF: For u1  in Si, i.e. lull = 1, and C small enough we consider the map:

S1 x ]OC[ - R

defined by: g(u1,t) Itu1 + 4(tul 1
2 . We have.

L



g(u1 't) - (tu1 + 0(tu1 ), uI + '(tul)U -

. t(u IlU + t(u 1l*'ltu I )u + (W(tu1 ),u 1 1 +

+ ( (tu ), 6'(tu )uI)

Thus by the property of * and *1 it follows that

atj glul,t) - ~u1 + 0(t)

Therefore there exists P0 > 0 such that

a
i- g(ul,t) > 0 for every t e (my 0)

Then we can apply the implicit function theorem to solve the equation:

g(u,t) - . P (for P < P

and we can say that there exists an unique function:

S1 + (O,0)

with the property that:

12qlu1 ,t) - p 2 , if and only if t - r(u1 )

Note that since g is G-invariant, also T is G-invariant.

Then we consider the map:

f : S,1% defined by:

f(u1) TUl)u1 + #(T(U )u

This map is the required G-homeomorphism.

It is easy to see that, since T is G-invariant, and * is G-equivariant, f is G-

equivariant? Moreover f is bijective because if ui 4 i, then T(u )UI + rl!I)Ulf

since T(uI) and T(u ) are both positive, and this implies that the corresponding points

in the graph of # are different.
0

We now need the following lemma whose proof can be found in CMH

LEMMA 3.3 - Every critical point of J is a critical point of J , and this provides

a solution of equation (3.2).

Now we can state the main result of this section:

-12-



Theorem 3.1 - Let HI be the eigenspace of A'(0) corresponding to an isolated eigenvalue

x0 of finite multiplicity n. Suppose that A is G-equivariant where G is a finite

group and set

(3.6') V - G.C.D.{!0uI, u e s1 n H11

Then if V ) 2, for every p small enough, equation (3.2) has at least n orbits of

solutions u such that ful I 0, provided that every solution is counted with its

multiplicity in the sense of Definition 1.1.

PROOF: By lemma 3.3, it is sufficient to estimate the number of critical points of J

By lemma 3.2 we know that MH is G-diffeomorphic to S1 n H1 which is a (n-Il

dimensional sphere. Therefore theorem 2.2 can be applied (cf. remark 2.4) with

6 - G.C.D.flOul : u e K)

with

K- {uem. I (ilm )'(u) - 01

By the definition of 6,

8 ) G.C.D.{I0ul : u e .)

and by lemsa 3.2

G.C.D.[0 Ul : u e H.I - V

Then the conclusion follows.

REHART 3.2 - Notice that the number 2 defined by (3.6') depends only on the action of

G on the eigenspace H, corresponding to the eigenvalue A0  (or more precisely on

10

HI n sI). The action of the group on H2 - HI is not relevant to the bifurcation from

0

As an application of the previous Theorem we will study the following problem:

(3.7) -Au = Uf(u) , U e H1 ()
0

where A c R is the square 2 and H1I M denotes the usual Sobolev space.

0 is invariant under the action of the group of the synetry of the square which is

denoted by C 4v. To be more precise C4v is the group of the following matrices:

-13-



4v 0 0, 0 0 1 0 1 0 1 0 -I0

The group C4 v induces an action on H (0) in the following way
0

T u = u(q(x,y)) , g e C4v (x,y) e a

We suppose that

(3.8) f e c l(3)

(3.9) f'(t) < a1 + a2 ItI
p  

p e u

(3.10) f(O) - 0 ; f*(O) - 1

We now set F(t) =t f(s)ds. Then by standard arguments it follows that the functional

(3.11) J(u) = F/ P(u)dxdy

is a C
2 

- C4v-invariant functional on H (M). On H (n) we use the gradient norm:
0 0

Jn Vu 12dxdy

<,- will denote the corresponding scalar product. Then the critical points of J on

the sphere ul 1 u e} satisfy the following equation

in f(u)v dxdy - A I. VuVv dxdy
1

which gives a solution of (3.7) with 
=

Now we define the operator A : H() H (D) by the formula
0 0

11
<A(u),v> = Qf(u)v dxdy for every v e H0) M

0
It is known that, by virtue of (3.8), (3.9) and (3.10) A 6 c (H (n)) and

0

<A'(0)(vlw> - f'(0)vw dxdy - vw dx dy

The eigenvalue problem for A'(0), in weak formulation, takes the form

<A'(0)[v],w> A < vw> V w e H (0)
0

which explicitly gives

vw dxdy - X J VuVw dxdy V w e H (0)

or - =v - V.

Therefore the eigenvalues of A'(0) are given by the formula
I

m,n 2 2
a +n w

and the corresponding slgenfunctions are: sin n(x + i)sin m(x + -), that is:
22

-14-



fsin nx sin my n nm both even

sin nx -cos my n even, m odd
(3. 13)

coo nx. sin my n odd, m even

coo nx -coo my n,m both odd

It is easy to see that in the first three cases C4,,, induces an action on the eigenspaces

corresponding to X mnwhich does not have fixed points.

Moreover, since 1C4,vI 8 it is obvious that

: G.C.D.{c 4,v (u)j u e n I nS 2

if HIis an sigenspace of A'(0) (and of -A) which does not contain fixed points.

Therefore, by theorem 3.1, the following result follows,

Theorem 3.2 - Let U be a eigenvalue of -Ai and suppose that ij - m2 + n2 Implies that

m and n are not both odd. Then U. is a bifurcation point of (3.7) and if k is the

dimension of the corresponding eigenspace then for every small c, (3.7) has at least

2(k+1) solutions u such that lul I = C.

0
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